翻訳と辞書
Words near each other
・ Furukawa, Miyagi
・ Furukawabashi Station
・ Furukimi Station
・ Furukuchi Station
・ Furulia
・ Furulund
・ Furulund (station)
・ Furulund, Partille
・ Furulunds IK
・ Furuma Station
・ Furumachi (Niigata)
・ Fursenko
・ Furslide
・ Furst Gabriel or Last Days of the Pirita Monastery
・ Furst Menschikoff
Furstenberg boundary
・ Furstenberg's proof of the infinitude of primes
・ Furstenberg's rosette
・ Furstenfeld
・ Fursuit
・ Fursultiamine
・ Fursy Teyssier
・ Furt
・ Furta
・ Furtado
・ Furtadoa
・ Furtados Music
・ Furtei
・ Furth
・ Furth an der Triesting


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Furstenberg boundary : ウィキペディア英語版
Furstenberg boundary
In potential theory, a discipline within applied mathematics, the Furstenberg boundary is a notion of boundary associated with a group. It is named for Harry Furstenberg, who introduced it in a series of papers beginning in 1963 (in the case of semisimple Lie groups). The Furstenberg boundary, roughly speaking, is a universal moduli space for the Poisson integral, expressing a harmonic function on a group in terms of its boundary values.
==Motivation==
A model for the Furstenberg boundary is the hyperbolic disc D=\. The classical Poisson formula for a bounded harmonic function on the disc has the form
:f(z) = \frac\int_0^ \hat(e^) P(z,e^)\, d\theta
where ''m'' is the Haar measure on the boundary and ''P'' is the Poisson kernel. Any function ''f'' on the disc determines a function on the group of Möbius transformations of the disc by setting . Then the Poisson formula has the form
: F(g) = \int_\hat(gz) \, dm(z).
This function is then harmonic in the sense that it satisfies the mean-value property with respect to a measure on the Möbius group induced from the usual Lebesgue measure of the disc, suitably normalized. The association of a bounded harmonic function to an (essentially) bounded function on the boundary is one-to-one.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Furstenberg boundary」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.